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Abstract

A set of optimum design objectives for the Six-
Port technique is derived from an examination of the
system equations. The optimization criterion is to
minimize the sensitivity of the solution to calibration
errors. The resulting set of design specifications
gives significant improvement in error cancellation.

Introduction

The value of the Six-Port technique as an alterna-
tive to conventional heterodyne methods for measuring
microwave network parameters has been shown in recent
investigations [1,2,3,4,5,6,8,9]. Many hardware reali-
zations of the Six-Port Junctions have been proposed in
the Titerature for use as microwave network analyzers
[1,3,8,9,10]. The ability to measure both magnitude
and phase without the use of a phase Tocked source
makes the Six-Port Analyzer very attractive. However,
this advantage is somewhat diminished by the require-
ment that calibration constants be provided for each
frequency of interest [7,8,9]. Thus while the source
need not be phase locked, its frequency must be known
to some accuracy, or the Six-Port based network ana-
lyzer must contain frequency measurement capability.

In addition, memory must be provided to store these
constants within the instrument. These 1imitations
greatly reduce the advantages of the Six-Port in swept
frequency measurements where the frequency may change
rapidly over a wide range.

The Timitation comes about from the high sensi-
tivity of the solution to small changes in the hardware
constants. These constants (coupling coefficients,
phase shifts, etc.), will change slightly as the
frequency is swept over the Six-Port's operating range.
Thus the higher the sensitivity to small changes in
these constants, the larger the number of frequencies
at which the Six-Port must be calibrated, and the more
accurately the frequency must be known or measured.
Alternatively, unit to unit differences due to fabrica-
tion errors may also alter the calibration and thus
system performance.

Solution of the Arbitrary Six-Port

Thus, in order to optimize the Six-Port junction
for use as a network analyzer, it is desirable to in-
vestigate the sensitivity of the solution to small
changes in the design constants. Engen [4] has ex-
pressed the design constants of an arbitrary Six-Port
conveniently as

Pi=1Aqa+Bb|2=K; |a|2[p-qq |2 (1)

P2=|A2a+B2b]2=K2|a|2[p-q2|2 (2)

P3=]A3a+B3b|2=K3|a]2[p-q3|2 (3)

P4=|A4a+B4b]2=K4|a]2[p—q4|2 (4)
where q; = - A;/B,, K, = |Bi]2, and p = b/a.

Any Tinear Six-Port with four ports terminated in
power meters, figure 1, can be. represented in the form
of (1) - (4).

The significance of the value of the q's is best
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demonstrated by example. If q is equal to 0, the
equation describes a directional coupler coupled only
to the incident wave. A value of q equal to unity
describes equal coupling to both incident and re-
flected waves, while the phase of g determines the
phase difference. The K's in (1) - (4) are constants
of proportionality and are hereafter assumed to be in-
corporated in P1 through P4. In this representation
the basic hardware structure is described by four
complex constants. The solution of o involves solving
a system of four nonlinear simultaneous equations in
three unknowns (Re(p)}, Im(p), |a}). Thus the system
is overdetermined. It is this extra degree of freedom
which allows significant improvement in desensitivity
to perturbations in the values of the q's. The opti-
mization problem is then to choose values for the q's
which minimize the sensitivity of the solution to
small changes in the q values around nominal design
values.

To this end, the solution of the complex reflec-
tion coefficient is expressed as the intersection of
circles in the p plane [4]. These circles are the
locus of points satisfying the measurement data and
are found by dividing pairs of equations (1)-(4). For
example equation (1) divided by equation (2) yields
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In general, dividing PL by PM gives a circle having a
radius R

2 PL Pu
LM = rLM 2 IqL'qMIZ (6)
(PM-PL)

R

and a center

q, Py - ayP
L'M ML (7)
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PM—PL
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There are six such circles, all having a common inter-
section inside the unit circle of the plane or Smith
Chart, This intersection is the value of the complex
reflection coefficient p [4].

The six circles are a set of six equations in two
unknowns (having eliminated |a] ). There can only be
three independent equations so we must choose three
of the six. The basis of this choice will be determin-
ed after investigating the sensitivity of the solutions.

Optimization of the Six-Port

When small errors are introduced into the values
of the g's, the circles no longer intersect in a
common point, and errors are introduced in the final
result. The sensitivity of the final result to changes
in the values of the q's will depend on the algorithm
used to average the intersections. In order to remain



as general as possible at this point, it is necessary
to investigate the sensitivities independently of such
an algorithm. By examining the sensitivity of the
radii and centers of the individual circles, and not
the intersections, the problem of specifying an al-
gorithm is bypassed.

The sensitivity of each circle to g variation can
be expressed as the partial derivatives of the radii
and the centers with respect to the real and imaginary
part of the q values. Thus for the circle formed by
dividing PL by PM the following derivatives may be
written:
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where o = Re(qi) and By = Im(qi)
. I@ js_desired to choose values for the q's which
will minimize (8) - (13). When either q, or qy are

zero or infinity, each of the partials (8) - (13) go
to zero. Engen [4] has chosen infinity as one value
for his realizations. However, while this is indeed
insensitive to perterbations in q, it is also in-
sensitive to the value of p, and thus contains no in-
formation about p. Therefore it appears that equal
to zero is a better choice.

. Equations (8) - (13) provide an additional in-
sight; as PL approaches PM’ the sensitivities approach

infinity. Thus in choosing which set of three circles
from (7) - (8) to use in solving for p, one must not

allow PL and PM to be equal. This can be avoided for
q, equal to 0 if lqu > ¥2. On the other hand, if 9y
is too large, the dynamic range of P1 becomes small,

and the measurement contains little information about
p [4]. Thus the remaining three values of g's should
have magnitudes very nearly equal to v2. Finally, as
noted by Engen [4], they should be dispersed symetric-
ally about the orgin, ideally at 120° displacements,
however it does not appear critical that they be
exactly at 120° increments.

Realizations

To test the above theory, a narrow band test jiis,
figure (2), has been built. By adjusting the sliding
section of Tine, or trombone, any desired phase of g
can be simulated. The magnitude of q is fixed at v2
by the 3 dB pad. A q of zero is obtained by measuring
directly at the directional coupler's reflected port.
The variation in the gq's with frequency for this system
is shown in figure (3), while a typical error in phase
measurement is shown in figure (4). Similar measure-
ments using q1 equal to infinity were unable to provide
reliable phase information at frequencies more the one
percent from the center frequency. It should be noted
that while these errors seem large, significant im-
provement in performance would be obtained with a broad
band system. Thus many of the presently used Six-Ports
may be further improved by simply modifying one of the
sampling ports to sample the reflected wave rather than
the incident wave. For example the circuit of figure
(5) is a rearrangement of the circuit proposed by Engen
which can be implimented over very broad frequency
ranges [3].

Conclusions

From the above development it is seen that use of
the set of design constants outlined makes the Six-Port
optimally insensitive to errors in the calibration
constants. This added stability against calibration
errors may be used to increase the frequency range over
which a given calibration vector may be used. Alter-
natively, the added stability could be used to allow an
increase in fabrication tolerances for a given Six-Port
realization.
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FIGURE 1: Arbitrary Six-Port Junction.
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FIGURE 2: Test Jig for Six-Port Realization. D is
a power divider/combiner.
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FIGURE 3: Variation of g's for the circuit
of Fig. 2. Frequency is in Mhz.
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FIGURE 4: Typical Phase error using circuit of
Fig. 2. 1]p]=0.33 .
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FIGURE 5: Proposed Six-Port. D is a power
divider, Q is a quadriture hybrid.




